Studyflix: Thermodynamik.

Die Entropie (Kunstwort altgriechisch ἐντροπία entropía, von ἐν en ‚an‘, ‚in‘ und τροπή tropḗ ‚Wendung‘) ist eine fundamentale thermodynamische Zustandsgröße eines makroskopischen physikalischen Systems. Ihre SI-Einheit ist Joule pro Kelvin (J/K). In der Geschichte der Physik gab es lange Zeit eine Auseinandersetzung über die Bedeutung von Wärme: Die eine Seite vertrat die Theorie, dass die Wärmeerscheinungen allein in der vis viva („lebendige Kraft“ = kinetische Energie) der Atome begründet seien; die andere behauptete, dass die Wärme eine Substanz sei, und gab ihr den Namen Caloricum (französisch calorique, englisch caloric).

Antoine Laurent de Lavoisier unterschied 1789 chaleur (Wärme) von calorique (Caloricum). Das Caloricum sollte unter anderem eine abstoßende Kraft zwischen den Atomen eines Festkörpers bewirken, so dass dieser bei Zufuhr einer ausreichenden Menge von Caloricum erst flüssig und dann gasförmig würde. Lavoisier wollte sich aber nicht festlegen, ob die vis viva oder die Caloricum-Substanz die Ursache für die Wärmeerscheinungen ist. Joseph Black Unterschied temperature von der quantity of heat, u. a. anhand der latenten Wärme beim Schmelzen. Er bemerkte, dass die Wärmemenge mit dem aus einem Kessel entweichenden Dampf mittransportiert werden müsse.

Benjamin Thompson, Reichsgraf von Rumford, untersuchte in seiner Münchner Zeit 1798 die Temperatur von Spänen, die beim Bohren von Kanonenrohren entstehen. Aufgrund der beliebig großen Wärmemenge, die dabei aus der mechanischen Bohrarbeit entstehen konnte, zweifelte er daran, dass das Caloricum eine (erhaltene) Substanz sein könnte, wodurch er den Vertretern der vis-viva-Theorie Auftrieb gab.

Der Namensgeber des Carnot-Prozesses, Nicolas Léonard Sadi Carnot, schrieb 1824, dass die Kraft einer Dampfmaschine nicht am Verbrauch von calorique liegt, sondern an ihrem Transport von einem warmen Körper auf einen kalten, und bereitete damit den Entropie-Begriff vor. Mit den Experimenten von Robert Mayer und James Prescott Joule wurde Anfang der 1840er Jahre gezeigt, dass die mechanisch erzeugte Wärme in einem festen Verhältnis zur aufgewendeten mechanischen Arbeit steht. Dies war die Grundlage für den 1847 von Hermann von Helmholtz allgemein formulierten Energieerhaltungssatz, also den ersten Hauptsatz der Thermodynamik. Seitdem hat der physikalische Begriff Wärme die Bedeutung einer Energie.

Weitere 20 Jahre später stellte dann Rudolf Clausius fest, dass bei einer Übertragung der Energieform Wärme auch eine zweite mengenartige Größe fließen muss. Diese Größe, die er auch quantitativ definierte, sah er als die Ursache für die Disgregation eines festen Körpers beim Schmelzen an und nannte sie Entropie. Wie von Wilhelm Ostwald 1908 sowie Hugh Longbourne Callendar 1911 herausgearbeitet, entspricht die Entropie bei Clausius dem calorique bei Lavoisier und Carnot.

Mit Arbeiten von Ludwig Boltzmann und Willard Gibbs gelang es um 1875, der Entropie eine statistische Definition zu geben, welche die von Clausius makroskopisch definierte Größe mikroskopisch erklärt. Die Entropie S eines Makrozustands wird dabei durch die Wahrscheinlichkeiten p i der Mikrozustände i berechnet:

Die Entropie eines Systems steigt mit jedem makroskopischen Prozess, der innerhalb des Systems spontan abläuft, und mit jeder Zufuhr von Wärme oder Materie von außen. Spontan ablaufende Prozesse sind z. B. Vermischung, Wärmeleitung, chemische Reaktion, aber auch Umwandlung von mechanischer Arbeit in Innere Energie durch Reibung (siehe Dissipation, Energieentwertung). Abnehmen kann die Entropie eines Systems nicht durch innere Prozesse, sondern nur durch Abgabe von Wärme oder Materie nach außen. Daher kann in einem abgeschlossenen System (einem System, bei dem es keinen Energie- oder Materieaustausch mit der Umgebung gibt) die Entropie nicht abnehmen, sondern im Laufe der Zeit nur gleich bleiben oder zunehmen (Zweiter Hauptsatz der Thermodynamik). Hat ein abgeschlossenes System die maximal mögliche Entropie erreicht, kommen alle spontan darin ablaufenden Prozesse zum Erliegen, und das System ist in einem stabilen Gleichgewichtszustand.

Beispielsweise beobachten wir, dass in einem System aus einem kalten und einem heißen Körper in einer Isolierbox, d. h. in einem praktisch abgeschlossenen System, Wärmetransport einsetzt und der Temperaturunterschied verschwindet. Beide Körper werden nach einer gewissen Zeit die gleiche Temperatur haben, womit das System den Zustand größter Entropie erreicht hat und sich nicht weiter verändert. Wir beobachten in einem solchen geschlossenen System niemals das spontane Abkühlen des kälteren Körpers und das Erhitzen des wärmeren.

Spontane makroskopische Prozesse sind irreversible Prozesse. In einem abgeschlossenen System kann ein irreversibler Prozess nur durch einen äußeren Eingriff rückgängig gemacht werden, bei dem die entstandene Entropie abgeführt wird. Dazu muss das System mit seiner Umgebung gekoppelt werden, die den Zuwachs an Entropie aufnimmt und ihren eigenen Zustand dadurch auch verändert.

Eine nähere Deutung der Entropie wird in der statistischen Mechanik gegeben, wo Systeme aus sehr vielen einzelnen Teilchen betrachtet werden. Ein Makrozustand eines solchen Systems, der durch bestimmte Werte der makroskopischen thermodynamischen Größen definiert ist, kann durch eine hohe Anzahl verschiedener Mikrozustände realisiert sein, die durch innere Prozesse ständig ineinander übergehen, ohne dass sich die makroskopischen Werte dabei ändern. Die Anzahl dieser Mikrozustände bestimmt die Entropie, die das System in dem gegebenen Makrozustand besitzt. In einem System, das von einem beliebigen Anfangszustand aus sich selbst überlassen bleibt, bewirken dann diese inneren Prozesse, dass der Zustand des Systems sich mit größter Wahrscheinlichkeit demjenigen Makrozustand annähert, der bei gleicher Energie durch die größte Anzahl verschiedener Mikrozustände zu realisieren ist. Dieser Zustand hat die höchstmögliche Entropie und stellt den stabilen (makroskopischen) Gleichgewichtszustand des Systems dar. Während dieser spontan ablaufenden Annäherung an den Gleichgewichtszustand, die als Relaxation bezeichnet wird, wird Entropie erzeugt.

Im Rahmen dieser Deutung wird umgangssprachlich die Entropie häufig als ein „Maß für die Unordnung“ bezeichnet. Allerdings ist Unordnung kein definierter physikalischer Begriff und hat daher kein physikalisches Maß. Richtiger ist es, man begreift die Entropie als ein wohldefiniertes objektives Maß für die Menge an Information, die benötigt würde, um von einem beobachtbaren Makrozustand auf den tatsächlich vorliegenden Mikrozustand des Systems schließen zu können. Dies ist gemeint, wenn die Entropie auch als „Maß für die Unkenntnis der Zustände aller einzelnen Teilchen“ umschrieben wird – Siehe auch Thermo-Dynamik bei Geld.