Die verschiedenen Aggregatzustände.
Aggregatzustände sind fundamentale Erscheinungsformen von Materie, die sich jeweils sprunghaft in der Mobilität ihrer Atome und Moleküle sowie in der Stärke der Wechselwirkungen zwischen diesen unterscheiden. Die klassischen Aggregatzustände fest, flüssig und gasförmig lassen sich daher sensorisch anhand ihrer unterschiedlichen makroskopischen mechanischen und rheologischen Eigenschaften identifizieren. Daneben werden in der Physik auch weitere, in der Biosphäre der Erde nicht oder kaum natürlich vorkommende Erscheinungsformen der Materie als Aggregatzustand bezeichnet. So gilt Plasma, aus dem beispielsweise die Sonne besteht, als vierter Aggregatzustand der Materie.
Bestimmte Stoffe, wie etwa Flüssigkristalle, viskoelastische Stoffe oder Schmelzen besonders langkettiger Polymere, können Merkmale sowohl des festen als auch des flüssigen Aggregatzustandes aufweisen. Gläser ataktischer Polymere mit hohen Molekulargewichten werden oft als Festkörper betrachtet, obwohl es sich bei diesen lediglich um Flüssigkeiten mit einer – verglichen mit den Zeitskalen menschlicher Wahrnehmung – stark verlangsamten Dynamik handelt.
Der Begriff Aggregatzustand ist vom enger gefassten Begriff Phase abzugrenzen. Eine Phase ist innerhalb eines Materials ein räumlich begrenzter Bereich, der chemisch und physikalisch einheitliche Eigenschaften aufweist. Ein Aggregatzustand kann mehrere Phasen umfassen. Beispielsweise können homogene Feststoffe bei unterschiedlichen Temperaturen und Drücken in unterschiedlichen Kristallmodifikationen vorliegen, die durch enantiotrope Umwandlungen ineinander überführbar sind und die jeweils eine eigene Phase darstellen. Heterogene Gemische können einheitlich im festen oder flüssigen Aggregatzustand vorliegen, aber mehrere Phasen unterschiedlicher stofflicher Zusammensetzungen enthalten. Bei Gasen und Plasmen lassen sich die Begriffe Aggregatzustand und Phase synonym verwenden.
Die Überführung eines Stoffes in einen anderen Aggregatzustand erfolgt durch einen Phasenübergang, der sich durch eine Zustandsänderung herbeiführen lässt, etwa durch eine Änderung der Temperatur, des Drucks oder des Volumens. Die Grenzen zwischen den verschiedenen Aggregatzuständen im Zustandsraum eines Stoffes lassen sich graphisch mit Hilfe von Phasendiagrammen darstellen – Quelle.
Fest, flüssig oder gasförmig.
Im Alltag macht man sich wenig Gedanken darüber, wie unterschiedlich Wasser aussehen kann – es kann flüssig aus der Leitung kommen, gasförmig, wenn Wasser verdampft oder im Sommer als Eiswürfel in der Cola. Physikalisch gesehen sind das die verschiedenen Aggregatzustände von Wasser: Als Eis nimmt es einen festen, als Wasser einen flüssigen und als Wasserdampf einen gasförmigen Zustand ein. Das sind auch die drei klassischen Aggregatzustände. Die meisten Stoffe kommen in verschiedenen Aggregatzuständen vor. Welcher gerade vorliegt, hängt dabei von verschiedenen Faktoren ab: vom Stoff selbst und seinen individuellen Eigenschaften, von der Temperatur und vom Umgebungsdruck.
Chemisch bleibt der Stoff derselbe – es ändern sich nur die physikalischen Bedingungen und damit der Aggregatzustand. Wie lassen sich die Unterschiede zwischen diesen drei Zuständen verständlich beschreiben? Das geht recht einfach mit den Begriffen Volumen und Form:
Ein fester Stoff hat in der Regel ein nahezu festes Volumen und eine feste Form. Sie lassen sich nur schwer verformen.
Ein flüssiger Stoff hat auch ein festes Volumen, aber keine feste Form. Vielmehr passt er sich immer der Form der jeweiligen Umgebung an.
Ein gasförmiger Stoff hingegen hat weder ein festes Volumen noch eine feste Form – er verteilt sich immer komplett in dem Raum, der zur Verfügung steht.
Prinzipiell kann gesagt werden: Wenn ein Stoff seinen festen Zustand hat, ist auch die Dichte am größten – und als Gas ist die Dichte am niedrigsten.
Veränderung des Aggregatzustandes = Transformation.
Um von einem in den anderen Aggregatzustand zu wechseln, ist die Aufnahme oder die Abgabe von Energie notwendig.
Beispiel:
Wird eine Wachskerze angezündet, wird Energie zugeführt – das Wachs wechselt seinen Aggregatzustand und wird flüssig. Überhaupt spielt die Temperatur eine wichtige Rolle bei diesem Thema.
Am Beispiel des Wassers lassen sich die einzelnen Vorgänge gut erfassen (Achtung: Alle Werte in der Tabelle gelten für normalen Luftdruck von einem Bar. Steigt man auf hohe Berge, sinkt der Luftdruck und das Wasser siedet früher, in Mexiko City auf 2 300 Meter Höhe etwa bei 93 Grad Celsius (°C)):
schmelzen
Eis schmilzt, wenn die Temperatur über 0 °C steigt (= Schmelztemperatur). Diese Wärme ist als Energie notwendig.
erstarren
Wasser wird zu Eis, wenn die Temperatur unter 0 °C sinkt – Energie wird abgeführt und das Wasser gefriert.
Übrigens, kennst du die „Dichteanomalie“ des Wassers? Diese ist der Grund dafür, dass sich Wasser beim Frieren ausdehnt.
verdampfen
Wasser verdampft, wenn genügend Energie zugeführt wird. Dies passiert, wenn die Temperatur unter Normaldruck 100 °C erreicht (= Siedetemperatur). Das sieht man hervorragend, wenn Wasser in einem Kochtopf erhitzt wird.
kondensieren
Trifft Wasserdampf auf eine kalte Oberfläche, bilden sich Tropfen – das Wasser wechselt zurück in den flüssigen Zustand.
resublimieren
Der Aggregatzustand wechselt vom gasförmigen in den festen Zustand, ohne zwischendurch flüssig zu werden. Ein Beispiel dafür ist Raureif (fester Niederschlag), der sich an einem kalten Wintermorgen in der Natur bildet, denn aus dem in der Luft enthaltenen Wasserdampf werden sofort Eiskristalle.
sublimieren
Das ist der Übergang vom festen in den gasförmigen Aggregatzustand. Ein Beispiel ist Wäsche, die bei Frost draußen trocknet. Das enthaltene Wasser wird zuerst zu Eis und sublimiert dann zu Wasserdampf. So wird die Wäsche im Winter draußen auch trocken! – Quelle.